Вы здесь: Home НОУ Uncategorised «ВОДОРОД» (участник: Юрчук Анна, уч. 9 кл., науч. рук: Кузьмина А.И) (ссылка)
МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 9
СЕЛЬСКОГО ПОСЕЛЕНИЯ « ПОСЕЛОК СОФИЙСК»
ВЕРХНЕБУРЕИНСКОГО МУНИЦИПАЛЬНОГО РАЙОНА ХАБАРОВСКОГО КРАЯ
Кафедра: естественно - научная
Секция «химии»
Тема: «ВОДОРОД»
Исследовательская работа по химии
Выполнила:
Юрчук Анна
9 класс
МБОУ СОШ №9
Научный руководитель: Кузьмина Анастасия Ивановна
учитель биологии и географии, химии
МБОУ СОШ №9
п.Софийск, 2017
СОДЕРЖАНИЕ
Введение стр.3
1.Значение водорода в жизни людей. стр.5
1.1. Общие сведения о водороде стр.5
1.2. Биологическая роль водорода стр.6
1.3. Что такое водородная технология? стр.7
2. Получение водорода. стр.10
3. Выполнение практической работы по получению водорода в лабораторных условиях. стр.10
3. 1 Опыт. стр.10
Заключение стр.12
Список рекомендованной литературы. стр.13
Приложение стр.14
Введение
Большую роль в использовании природных энергетических источников играют транспортные средства, потребляющие около трети всей добываемой в мире нефти , причем из всех видов транспорта наиболее энергоемким является автомобильный. Использование в автомобилях топлива нефтяного происхождения сопровождается выбросом в атмосферу огромного количества вредных веществ. В результате на автомобильный транспорт приходится основная доля загрязнения окружающей среды, масштабы которой глобальны. Альтернативные источники энергии, не наносящие ущерба окружающей среде являются основной надеждой завтрашнего дня. Водородное топливо уже давно занимает ведущие позиции среди других источников энергии. Обладающий уникальными свойствами, водород по праву называют топливом ближайшего будущего, так как он обладает экологичностью веществ. Хотя водород обладает чудесными характеристиками, его почти не применяют на автотранспорте потому, что люди привыкли использовать бензин, который дорожает с каждым днем. Также ведущие автокомпании постоянно откладывают сроки перехода на водородное топливо, мотивируя это тем, что установки для получения водорода появятся только к 2030 году.[1]
Актуальность представленной работы состоит в том, что необходимо еще раз проверить данные о водородной энергетики как о производстве водорода и его использование на основе топливных элементов в промышленности, энергетике, на транспорте, в жилищно-коммунальном хозяйстве и других сферах экономики.
Цель: представить водород как альтернативный вид топлива, как топливо будущего.
Задачи:
Использованы соответствующие методы исследования:
Материалы:
Вещества:
Объект исследования: водород
Предмет исследования: получение водорода
Гипотеза: Возможно ли использование водорода как альтернативного вида топлива.
1.Значение водорода в жизни людей.
1.1. Общие сведения о водороде
Водород – элемент VII группы периодической системы с атомным номером 1. Впервые выделен фламандским химиком И. Ван Гельмонтом в XVII в. Изучен английским физиком и химиком Г. Кавендишем в конце XVIII в. Название водорода происходит от греч. hydro genes (порождающий воду).
Водород является одним из самых распространенных элементов во Вселенной. Энергия излучаемая Солнцем рождается в результате реакции слияния четырех ядер водорода в ядро гелия. На Земле водород входит в состав воды, минералов, угля, нефти, живых существ. В свободном виде небольшие количества водорода встречаются в вулканических газах.
Водород – газ без цвета и запаха, не растворяется в воде, образует с воздухом взрывоопасные смеси. Существуют три разновидности водорода: протий, дейтерий и тритий, различающиеся по числу нейтронов. Получают водород при электролизе воды, в качестве побочных продуктов при переработке нефти.
Применение водорода в качестве топлива началось еще в XIX веке, когда французский изобретатель Франсуа Исаака де Риваз в 1806 году разработал самый первый в мире ДВС, потребляющий водородное топливо. Необходимую электрическую энергию он получал методом электролиза воды. Позже бельгийский изобретатель Жан Жозеф Этьен Ленуар заставил самоходный экипаж двигаться с помощью энергии водорода. Так бы водород и служил бы человечеству в качестве основного топлива, но в 1870 году в ДВС стали применять бензин, сведя на нет первые опыты с водородным топливом. О водороде вспомнили только в блокадном Ленинграде в конце 1941 года, благодаря военному технику Б. И. Шелищу, который предложил использовать отработанный водородный газ для заправки автотранспорта. От налетов вражеской авиации Ленинград защищался зенитными орудиями, а также заградительными аэростатами, наполненными водородом, чтобы помешать прицельной бомбардировке города. Когда водородные аэростаты спускались на землю, их использовали в качестве альтернативного источника топлива. Всего лишь за неделю группа техников переоборудовала на водородное топливо 600 грузовиков ГАЗ. После войны об этом изобретении снова забыли, перейдя опять на бензин. В 1970 годах, когда произошел энергетический кризис, люди опять оценили необходимость альтернативных источников энергии. Так, Украинским ИПМ был переоборудован весь свой автомобильный парк водородное топливо, отлично справившись с топливным кризисом. Об успешных экспериментах снова забыли после распада советского союза. Современные автомобили на водороде находятся пока в стадии проектирования, а вернее выпускать серийно опытные модели пока не собираются из-за неразвитой инфраструктуры заправок автотранспорта водородным топливом. В промышленных масштабах получить водород электролизом воды недешево, поэтому автокомпании пока не спешат на него переходить, ожидая более дешевый и простой способ получения топлива. [3]
Ведущую роль в научно-технологическом перевороте первой половины XXI века сыграет глобальная энергетическая революция — переход от преобладания истощающегося, загрязняющего окружающую среду ископаемого топлива к возобновляемым, экологически чистым источникам энергии. [1]
1.2. Биологическая роль водорода
Роль водорода в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17% (второе место после кислорода, доля атомов которого равна ~ 52%). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях практически весь водород на Земле находится в виде соединений. Лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005% по объему).
Содержание водорода в организме взрослого человека составляет около 10% (7 кг на 70 кг массы тела).
Основная функция водорода – структурирование биологического пространства (вода и водородные связи) и формирование разнообразия органических (биологических) молекул. Водород способен реагировать с электронположительными и электронотрицительными атомами, активно взаимодействовать со многими элементами, проявляя при этом как окислительные, так и восстановительные свойства. В реакциях со щелочными и щелочноземельными металлами водород выступает в качестве окислителя, а по отношению к кислороду, сере, галогенам проявляет восстановительные свойства.
В биологических процессах протон играет исключительно важную роль: определяет кислотные свойства растворов, участвует в окислительно-восстановительных превращениях. С участием ионов водорода происходит связывание катионов металлов в биокомплексы, протекают реакции осаждения (напр., образование минеральной основы костной ткани), гидролитический распад липидов, полисахаридов, пептидов.
В организме человека водород в соединениях с другими макроэлементами образует аминогруппы и сульфгидрильные группы, играющие важнейшую роль в функционировании различных биомолекул. Водород входит в структуру белков, углеводов, жиров, ферментов и других биоорганических соединений, выполняющих структурные и регуляторные функции. Благодаря водородным связям осуществляется копирование молекулы ДНК, которая передает генетическую информацию из поколения в поколение.
Вступая в реакцию с кислородом, водород образует молекулу воды. Вода – основное вещество, из которого состоит организм. В теле новорожденного человека содержание воды составляет около 80%, у взрослого – 55-60%. Вода принимает участие в громадном количестве биохимических реакций, во всех физиологических и биологических процессах, обеспечивает обмен веществ между организмом и внешней средой, между клетками и внутри клеток. Вода является структурной основой клеток, необходима для поддержания ими оптимального объема, она определяет пространственную структуру и функции биомолекул.
В биосредах часть воды (около 40%) находится в связанном состоянии (ассоциаты с неорганическими ионами и биомолекулами). Остальная часть, т.е. свободная вода, представляет собой ассоциированную водородными связями подвижную структуру. Между свободной и связанной водой происходит непрерывный обмен молекулами.
Воду, находящуюся в организме, принято условно разделять на внеклеточную и внутриклеточную. Внеклеточная вода, в свою очередь, это интерстициальная жидкость, окружающая клетки; внутрисосудистая жидкость (плазма крови) и трансцеллюлярная жидкость, которая находится в серозных полостях и полых органах. Накопление воды в организме (гипергидратация), может сопровождаться увеличением содержания воды в межклеточном секторе (отеки), в серозных полостях (водянка) и внутри клеток (набухание). Уменьшение содержания воды в организме (дегидратация), сопровождается снижением тургора, сухости кожи и слизистых оболочек, гемоконцентрацией и гипотензией.
Существует теория, связанная со структурированным характером воды, о так называемой информационной роли воды в живых системах и наличии у водных растворов структурной памяти.
Несмотря на то, что вода является одним из главных компонентов человеческого организма, ее роль до настоящего времени недооценена и мало изучена как учеными, так и представителями практической медицины. Между тем, потеря человеком почти всего гликогена и жира или половины белка по своим последствиям для здоровья значат меньше, чем потеря всего 10% воды (тогда как потеря 20% воды приводит к смертельному исходу).
Потребность человека в воде составляет 1-1,5 мл на Ккал потребляемой пищи, т. е., при энергетической ценности рациона в 2000 Ккал организму требуется от 2 до 3 литров воды в сутки. Около 300-400 мл воды ежедневно образуется в организме человека в результате различных метаболических реакций. Окисление 1 г углеводов приводит к образованию 0,6 г воды, 1,07 г липидов и 0,41 г белков.
1.3. Что такое водородная технология?
Под водородной технологией подразумевается совокупность промышленных методов и средств для получения, транспортировки и хранения водорода, а также средств и методов его безопасного использования на основе неисчерпаемых источников сырья и энергии. Переход транспорта, промышленности, быта на сжигание водорода – это путь к радикальному решению проблемы охраны воздушного бассейна от загрязнения оксидами углерода, азота, серы, углеводородами. Переход на водородную технологию и использование воды в качестве единственного источника сырья для получения водорода не может изменить не только водного баланса планеты, но и водного баланса отдельных её регионов.
Но водород как топливо и химическое сырьё обладает и рядом других ценнейших качеств. Универсальность водорода заключается в том, что он может заменить любой вид горючего в самых разных областях энергетики, транспорта, промышленности, в быту. Он заменяет бензин а автомобильных двигателях, керосин в реактивных авиационных двигателях, ацетилен в процессах сварки и резки металлов, природный газ для бытовых и иных целей, метан в топливных элементах, кокс в металлургических процессах (прямое восстановление руд), углеводороды в ряде микробиологических процессов. Водород легко транспортируется по трубам и распределяется по мелким потребителям, его можно получать и хранить в любых количествах. В то же время водород – сырьё для ряда важнейших химических синтезов (аммиака, метанола, гидразина), для получения синтетических углеводородов. [7]
Водород характеризуется наиболее высокими энерго-массовыми показателями среди химических топлив. Низшая теплота сгорания молекулярного водорода (с образованием водяного пара) составляет 241,9 МДж/моль (57740 ккал/моль), что соответствует 120 МДж/кг ( 28640 ккал/кг). Таким образом, водород по массовой энергоемкости превосходит традиционные углеводородные топлива примерно в 2,5-3раз, спирты-в 5-6раз и аммиак-в 7 раз. Однако вследствие очень низкой плотности водорода его объемные энергетические характеристики невысоки даже в криогенной форме:
Среди горючих газов водород характеризуется наиболее низкой энергией воспламенения (примерно в 70 раз меньше, чем у метана) и высокой скоростью сгорания. Влияние добавок водорода на антидетонационную стойкость углеводородного топлива носит довольно сложный характер. Однако при дальнейшем повышении содержания водорода наблюдается тенденция к детонационному сгоранию, так что при концентрациях Н 2 свыше 60% детонация имеет место уже при е=6, а при содержании водорода от 90 до 95 диапазон детонации расширяется почти в 2 раза. Современная технология обеспечивает ежегодное получение во всём мире десятков миллионов тонн молекулярного водорода. Более 90% его получается каталитической конверсией метана, жидких углеводородов, газификацией твёрдого топлива. Совершенно ясно, что в будущем при переходе на водородную технологию такие источники получения водорода, кроме твёрдого топлива, будут в основном исключены. В качестве основного источника сырья будет использоваться вода. Электролиз воды проводится в промышленной практике давно и широко описан в литературе. Сейчас делаются значительные усилия в науке промышленности, чтобы использовать неисчерпаемую энергию солнечного излучения для разложения воды. Но наиболее в технологическом плане являются методы термохимического разложения воды. Эти методы важны тем, что для разложения воды они могут использовать и тепло атомных реакторов, солнечное тепло, и тепло геотермальных вод, и любые другие виды тепла, например перепад температур верхних и нижних слоёв тропических морей. Разрабатываются и комбинированные термохимические процессы, которые наряду с теплом используют электрическую энергию – термоэлектрохимические процессы, солнечное излучение, фото- и термохимические процессы. Для промышленного получения водорода было предложено большое количество различных способов. Основные методы получения водорода в промышленности можно сгруппировать в следующие: а) химические методы; б) электрохимические методы; в) физические методы. К химическим методам относятся те процессы, в которых исходным веществом для получения водорода является химическое соединение (или ряд химических соединений) водорода с другими элементами, и откуда водород получается при помощи тех или иных химических реакций. Под электрохимическими следует понимать те методы, где выделение водорода из его химических соединений осуществляется разложением последних под действием электрического тока. К физическим методам следует причислять те процессы, в которых исходное сырьё (газовая смесь) уже содержит свободный водород и требуется тем или иным физическим путём (например, фракционной конденсацией) освободить его от остальных компонентов. Химическими методами водород в промышленности получается следующими путями. Из водяного пара восстановлением его железом (железо - паровой способ) или углеродом (газификация кокса, каменных и бурых углей и других видов твёрдого топлива на водяной газ). Из газообразных углеводородов термическим разложением или конверсией с окислителями (Н 2О, О 2, СО 2). Из жидких углеводородов термическим разложением или неполным окислением (газификацией) с применением в качестве окислителей Н 2О и О 2. Необходимо отметить, что при получении водорода из углеводородов с применением в качестве окислителя водяного пара последний является дополнительным источником водорода.
Конкретным сырьём для получения водорода из газообразных углеводородов при термическом разложении служат любые углеводородные газы, не содержащие кислородных соединений, или содержащие их в незначительном количестве, как природные так и попутные газы, газы нефтепереработки и газы гидрирования. При конверсии газообразных углеводородов с водяным паром углекислотой или кислородом сырьём являются: а) природные и попутные газы; б) газы нефтепереработки, в) газы гидрирования; г) жидкие газы (пропан, бутан); д) коксовый газ; е) метановая фракция после выделения водорода из коксового газа методом глубокого охлаждения. При неполном окислении жидких углеводородов в качестве сырья применяются преимущественно нефтяные остатки.
Ознакомившись с достоинствами и недостатками водородного топлива можно понять, почему до сих пор откладывается серийный выпуск водородных автомобилей. Однако из-за ухудшающейся экологии этот альтернативный источник энергии может оказаться единственным решением проблемы.
2. Получению водорода
Существует несколько способов получения водорода в лабораторных условиях.
Получение водорода действием разбавленных кислот на металлы. Металлы, расположенные в электрохимическом ряду напряжений выше водорода, реагируют с разбавленной серной или соляной кислотой, образуя соль и водород. Для проведения такой реакции чаще всего используют цинк и разбавленную соляную кислоту:
Получение водорода с помощью электролиза. При электролизе разбавленных водных растворов щелочей или кислот на катоде происходит выделение водорода, например
Получение водорода действием щелочей на цинк или алюминий. Цинк и алюминий реагируют с водными растворами гидроксида натрия или гидроксида калия, образуя водород:
Получение водорода гидролизом ионных гидридов. Ионные гидриды, как, например, гидрид кальция , реагируют с холодной водой, образуя водород: [1]
3. Выполнение практической работы по получению водорода в лабораторных условиях
В ходе проведения работы был проведен химический эксперимент по способам получения водорода в школьной лаборатории и изучению его свойств. Серия опытов показала о величайшей силе водорода, что непременно будет использовано в будущем человечеством.
Данное исследование проводилось в январе-феврале 2017 года под руководством учителя химии Кузьминой А.И.. Данная работа является исследовательской работой МБОУ СОШ №9 п. Софийск по подтверждению гипотезы о водородном топливе как химическом уникальном элементе.
3.1. Опыт №1.
Для проведения химической реакции использовали цинк и разбавленную соляную кислоту:
В ходе опыта нужно было подтвердить гипотезу о силе водорода как источнике энергии. Газоотводную трубку от прибора для получения газов направили в пустую консервную банку с закрытым бумажной полоской отверстием и подождали в течение часа. Подожгли лучинку и поднесли к отверстию консервной банки и результат опыта подтвердился – раздался хлопок и банка подпрыгнула с песочной основы на 5см. Такой опыт можно назвать «летающая банка», если собрать больше водорода в металлической банке. В смеси водорода с кислородом при комнатной температуре реакция не протекает. Однако при поджигании смеси происходит реакция со взрывом. Если объемы водорода и кислорода находятся в соотношении 2:1, то происходит сильный взрыв. Такую смесь называют гремучим газом.
Чистый водород в пробирке сгорает с тихим звуком. Если же водород смешан с воздухом, то он взрывается с лающим звуком, такая смесь опасна. При поджигании водорода пробирку держат вверх дном, так как водород легче воздуха. В результате реакции горения водорода образуется вода: 2H2 + O2 = 2H2O.
Заключение
В результате своей исследовательской работы узнала о таком важном, незаменимом, и интереснейшем веществе на нашей планете, как водород. И если есть возможность предотвратить попадание этих опаснейших веществ в атмосферу, то почему мы этого до сих пор не сделали, почему это не сделали не мы, а те, кто этим должен заниматься?
В ходе работы я узнала, что у нас ещё есть возможность хоть как то наладить экологическую обстановку. В ходе работы я выяснила, что водород – это будущее нашей планеты.
Список рекомендованной литературы:
1.Водород как альтернативный вид топлива - текст работы revolution.allbest.ru›
2. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.
3. Химия 9 класс : учебник для общеобразовательных учреждений/О.С. Габриелян. – М: Дрофа, 2006 (§21)
4. Интернет «Популярная библиотека химических элементов
5. Водородное топливо как альтернативный вид...BestReferat.ru›referat-275791.html
6.Экология. Промышленная утилизация. Переработка...
novellamultimedia.narod.ru›public/2010-garbage-89…
7.Б.Н., КушлинВ.И., ЯковецЮ.В. Напути к водородной...
Приложение
Преимущества водородных двигателей внутреннего сгорания
Недостатки.
Имеются и недостатки у автомобилей на водородном топливе:
Мировые производители все же проводят испытание в этой сфере и даже выпускают автотранспорт на водородном топливе:
Toyota — модель Toyota Highlander FCHV;
Ford Motor Company проводит испытания с концептом Focus FCV;
Honda со своей моделью Honda FCX;
Hyundai выпускает Tucson FCEV;
Daimler AG отвечает за модель Mercedes-Benz A-Class;
General Motors.